Abstract

In recent decades, antibiotics have been found in aquatic environments, raising severe concerns. In this study, a unique reduced graphene oxide-zinc sulfide-copper sulfide (rGO-ZnS-CuS) nanocomposite (NC) prepared by using a straightforward surfactant-free in situ microwave method was used for antibiotic degradation via photocatalysis. The structural and morphological characteristics of the produced catalysts were characterized using various techniques, confirming the successful development of nanocomposite structures of better quality than that of the pure samples. The photocatalytic degradation of antibiotics containing ofloxacin was also investigated. The results suggest that the rGO-ZCS NC outperformed the other composites in terms of photocatalytic activity toward ofloxacin degradation. Superoxide and hydroxyl radicals were the main active species during the degradation process. According to our results, the catalytic activity of rGO-ZCS NC is much better than that of the other composites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call