Abstract

Currently, as the requirements for simple implementations in the motor control technologies increase, System-on-Chip (SoC) device such as Zynq All Programmable SoC was devised to meet those requirements. Because this CPU and FPGA can be assembled into one SoC device, we can consolidate motor-control functions and additional processing tasks into a single SoC device. The control algorithms, networking and other tasks, are off-loaded to the programmable logic that can include multiple control cores and multiple control system. This SoC system with a single chip can allow the hardware design with a single chip, hence, we can implement to control the motor to be simpler, more reliable, and less expensive. In this paper, in order to implement motor controller, we apply latest All Programmable SoC technologies for humanoid robot or industrial device that is integrated with FPGA technologies and embedded processor technologies. We also propose the structure of motor controller that decentralizes the function of motor driver from previous typical motor driver into FPGA and level of embedded processor by using All Programmable SoC for humanoid robot or industrial device. We verify the possibilities of applying the novel implemented motor controller in Zynq EPP (Extensible Processing Platform) which is one kind of All Programmable SoC made by Xilinx. To do this, we perform velocity control and position control with digital PI controller on the BLDC motor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call