Abstract

This article is devoted to the investigation of the sensing behavior of chemically treated multi-walled carbon nanotubes (MWNTs) at room temperature. Chemical treatment of MWNTs was carried out with a solution of either sulfuric or chromic acids. The materials obtained were investigated by transmission electron microscopy, scanning electron microscopy, Raman-spectroscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. The active layer of chemiresistive gas sensors was obtained by cold pressing (compaction) at 11 MPa of powders of bare and treated multi-walled carbon nanotubes. The sensing properties of pellets were investigated using a custom dynamic type of station at room temperature (25 ± 2 °C). Detection of NO2 was performed in synthetic air (79 vol% N2, 21 vol% O2). It was found that the chemical treatment significantly affects the sensing properties of multi-walled carbon nanotubes, which is indicated by increasing the response of the sensors toward 100–500 ppm NO2 and lower concentrations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.