Abstract
The hydrogen sensing properties of multi-walled carbon nanotubes (MWNTs) synthesized by a hot filament CVD process are reported in this paper. The MWNTs were synthesized by a hot filament assisted chemical vapor deposition method using cobalt oxide nanoparticles as the catalyst on SiO 2 surfaces. The MWNTs were characterized with Raman spectroscopy and scanning electron microscopy. Two-terminal test devices were fabricated by depositing a layer of MWNTs between prefabricated gold electrodes on SiO 2 surfaces. The diameter of these MWNTs was in the 5–8 nm range. The sensitivity of carbon nanotubes was measured for different gas concentrations at different temperatures. It was found that the MWNTs were sensitive to H 2 in low temperature regions of 140–350 °C and had a maximum sensitivity (80%) at 230 °C. No sensitivity was observed at a temperature lower than 140 °C or higher than 400 °C. Though bare MWNTs are not sensitive to H 2 at room temperature, they exhibited very good sensing characteristics in the 140–300 °C range.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.