Abstract

NO2 gas sensing properties of the nitrogen-hyperdoped black silicon (N-Si) modified at different annealing temperatures are studied. Owing to the abundant defects in the material and their changes with the annealing, the thermal modification brings a series of novel sensing behaviors and characteristics. Working as the sensitive material in a conductometric gas sensor, the pristine N-Si exhibits an undesirable n- to p-type response transition for higher NO2 concentration, which severely reduces its upper limit of detection (< 5 ppm). However, for the thermally modified N-Si after annealing at higher temperature (≥ 673 K), the abnormal response transition induced by higher concentration disappears. These modified N-Si show consistent p-type response to all tested NO2 concentrations, successfully breaking the detection limit. More interestingly, there is an optimal annealing temperature ~ 873 K, at which the sensor demonstrates outstanding sensing performances, including wide dynamic range spanning 5 orders of magnitude, rapid adsorption and desorption ability, high response and good selectivity, etc. Results indicate that through the thermal modification a novel N-Si gas-sensitive material is obtained. The mechanism for the thermally-induced response type conversion is discussed, in which the activation of acceptor energy levels provided by the complexes associated with substitutional nitrogen are considered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.