Abstract

The availability of high quality synoptic observations of the EUV and visible corona during the SOHO mission has advanced our understanding of the low corona manifestations of CMEs. The EUV imager/white light coronagraph connection has been proven so powerful, it is routinely assumed that if no EUV signatures are present when a CME is observed by a coronagraph, then the event must originate behind the visible limb. This assumption carries strong implications for space weather forecasting but has not been put to the test. This paper presents the first detailed analysis of a frontside, large-scale CME that has no obvious counterparts in the low corona. The event was observed by the SECCHI instruments. The COR2A coronagraph observed a slow flux-rope type CME, while an extremely faint partial halo was observed in COR2B. The event evolved very slowly and is typical of the streamer-blowout CME class. EUVI A 171 images show a concave feature above the east limb, relatively stable for about two days before the eruption, when it rises into the coronagraphic fields and develops into the core of the CME. None of the typical low corona signatures of a CME were observed in the EUVI-B images, which we attribute to the unusually large height from which the flux-rope lifted off. This interpretation is supported by the CME mass measurements and estimates of the expected EUV dimming intensity. Only thanks to the availability of the two viewpoints we were able to identify the likely source region. The event originated along a neutral line over the quiet sun. No active regions were present anywhere on the visible (from STEREO B) face of the disk. Leaving no trace behind on the solar disk, this observation shows unambiguously that a CME eruption does not need to have clear on-disk signatures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call