Abstract

As quantum processors advance, the emergence of large-scale decentralized systems involving interacting quantum-enabled agents is on the horizon. Recent research efforts have explored quantum versions of Nash and correlated equilibria as solution concepts of strategic quantum interactions, but these approaches did not directly connect to decentralized adaptive setups where agents possess limited information. This paper delves into the dynamics of quantum-enabled agents within decentralized systems that employ no-regret algorithms to update their behaviors over time. Specifically, we investigate two-player quantum zero-sum games and polymatrix quantum zero-sum games, showing that no-regret algorithms converge to separable quantum Nash equilibria in time-average. In the case of general multi-player quantum games, our work leads to a novel solution concept, that of the separable quantum coarse correlated equilibria (QCCE), as the convergent outcome of the time-averaged behavior no-regret algorithms, offering a natural solution concept for decentralized quantum systems. Finally, we show that computing QCCEs can be formulated as a semidefinite program and establish the existence of entangled (i.e., non-separable) QCCEs, which are unlearnable via the current paradigm of no-regret learning.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.