Abstract

How to effectively and accurately measure the degradation of media content is an important research topic in the field of image or video processing. Application scenarios such as online meetings, distance learning, and live game streaming make screen content video become a hot spot in Video Quality Assessment (VQA) research. However, to the best of our knowledge, there is currently no no-reference VQA model designed specifically for screen content videos. In this paper, we propose a blind VQA model for screen content videos. This model first uses a multi-scale approach to extract several groups of features, including gradient features, relative standard deviation features, compression features, frequency domain features and inter-frame features. Through training with labeled videos, the model then uses support vector regressor to map the frame feature vectors to video quality scores. We validate the model on the CSCVQ database. Experiments show that our proposed model outperforms the existing full- and no-reference quality evaluation metrics and is also competitive in terms of stability and computational efficiency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.