Abstract

Polyp segmentation plays a crucial role in the early diagnosis and treatment of colorectal cancer, which is the third most common cancer worldwide. Despite remarkable successes achieved by recent deep learning-related works, accurate segmentation of polyps remains challenging due to the diversity in their shapes, sizes, appearances, and other factors. To address these problems, a novel cross information fusion network with Transformer and convolutional neural network (CNN) for polyp segmentation, named CIFTC-Net, is proposed to improve the segmentation performance of colon polyps. In particular, a dual-branch encoder with Pyramid Vision Transformer (PVT) and ResNet50 is employed to take full advantage of both the global semantic information and local spatial features to enhance the feature representation ability. To effectively fuse the two types of features, a new global–local feature fusion (GLFF) module is designed. Additionally, in the PVT branch, a multi-scale feature integration (MSFI) module is introduced to fuse multi-scale features adaptively. At the bottom of the model, a multi-scale atrous pyramid bridging (MSAPB) module is proposed to achieve rich and robust multi-level features and improve the segmentation accuracy. Experimental results on four public polyp segmentation datasets demonstrate that CIFTC-Net surpasses current state-of-the-art methods across various metrics, showcasing its superiority in segmentation accuracy, generalization ability, and handling of complex images.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.