Abstract
We give a necessary condition for photon state transformations in linear optical setups preserving the total number of photons. From an analysis of the algebra describing the quantum evolution, we find a conserved quantity that appears in all allowed optical transformations. We give some examples and numerical applications, with example code, and give three general no-go results. These include (i) the impossibility of deterministic transformations which redistribute the photons from one to two different modes, (ii) a proof that it is impossible to generate a perfect Bell state with an arbitrary ancilla from the Fock basis and (iii) a restriction for the conversion between different types of entanglement (converting GHZ to W states). These tools and results can help in the design of experiments for optical quantum state generation.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.