Abstract

The role of the p75 neurotrophin receptor for neuronal survival after nerve crush was studied in L5 dorsal root ganglia (DRG) of knockout mice and controls with assumption-free stereological methods. Numbers of neuronal A- and B-cells were obtained using the optical fractionator and optical disector techniques. At birth, the total number of DRG neurons was 10,000 +/- 2,600 in control mice compared with 5,100 +/- 1,300 in p75 knockout mice. During postnatal development, 1,400 neuronal B-cell bodies were lost in p75 knockouts (2P < 0.05) and 1,100 in controls (NS), whereas the A-cell population remained stable. After a sciatic nerve crush, the total neuron loss in controls was 15.4% +/- 3.5% (2P < 0.05) and 22.7% +/- 5.1% (2P < 0.05) at days 14 and 42, respectively. In contrast, there was no loss in total number of neurons after crush in p75 knockout mice. Neuronal A-cell number was unchanged after the crush in p75 knockouts as well as in controls at both times. At 14 days, the population of B-cells was reduced by 24.8% +/- 3.6% in controls and by 6.1% +/- 3.5% in p75 knockouts, this difference being significant (2P < 0.001). At 42 days, the B-cell loss was 29.6% +/- 5.5% in controls and 4.2% +/- 6.4% in p75 knockouts (2P < 0.001). In conclusion, the lack of the p75 receptor results in neuronal DRG cells that are resistant to nerve injury, pointing to a role for the receptor in apoptosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.