Abstract

Bias in synonymous codon usage has been reported across all kingdoms of life. Evidence suggests that codon usage bias is often driven by selective pressures, typically for translational efficiency. These selective pressures have been shown to depress the rate at which synonymous sites evolve. We hypothesize that selection on synonymous codon use could also slow the rate of protein evolution if a non-synonymous mutation changes the codon from being preferred to unpreferred. We test this hypothesis by looking at patterns of protein evolution using polymorphism and substitution data in two bacterial species, Escherichia coli and Streptococcus pneumoniae. We find no evidence that non-synonymous mutations that change a codon from being unpreferred to preferred are more common than the opposite. Overall, selection on codon bias seems to have little influence over non-synonymous polymorphism or substitution patterns.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.