Abstract

Background: Most of the amino acids are encoded by more than one codon, termed as synonymous codons. Synonymous codon usage is not random as it is unique to species. In each amino acid family, some synonymous codons are preferred and this is referred to as synonymous codon usage bias (SCUB). Trends associated with evolution of SCUB and factors influencing its diversification in plastomes of genetically distinct Oenothera plastomes have not been investigated so far. Objectives: In the present study, major forces that shape SCUB in Oenothera plastomes and putative preferred codons in the protein coding genes (PCG) of plastomes were identified. Materials and Methods: To unravel various features of SCUB across selected Oenothera plastomes, commonly used codon usage indices such as relative synonymous codon usage (RSCU), synonymous codon usage order (SCUO), effective number of codons (ENC) and codon adaptation index (CAI) were calculated. Correspondence analysis (COA) on RSCU was performed to identify various characteristics of SCUB across different PCG in Oenothera plastomes. Spearman’s rank correlation analysis was adopted to correlate nucleotide contents, codon usage indices and major axes of COA to find out critical parameters in shaping SCUB. Results: Mutational bias due to compositional constraints played crucial role in shaping SCUB as T3 and GC3 contents were in strong negative correlation with all axes of COA. Nevertheless, significant negative correlations between axis 1 and 3 with ENC and CAI respectively, in all species, and narrow distribution of GC contents in neutrality plot, indicate the role of natural selection. Hydropathy score of proteins was found to be influencing SCUB in O. glazioviana as it showed strong negative correlation with axis 2. Conclusion: We concluded that mutational pressure coupled with weak selection influenced SCUB in the examined plastomes of Oenothera. In addition, all examined species of Oenothera exist as disjunct populations in different parts of North America and these populations might have experienced genetic drift as random mutations in small populations that have been fixed over a period of time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.