Abstract

Both purinergic stimulation and activation of cystic fibrosis transmembrane conductance regulator (CFTR) increases Cl − secretion and inhibit amiloride-sensitive Na + transport. CFTR has been suggested to conduct adenosine 5′-triphosphate (ATP) or to control ATP release to the luminal side of epithelial tissues. Therefore, a possible mechanism on how CFTR controls the activity of epithelial Na + channels (ENaC) could be by release of ATP or uridine 5′-triphosphate (UTP), which would then bind to P2Y receptors and inhibit ENaC. We examined this question in native tissues from airways and colon and in Xenopus oocytes. Inhibition of amiloride-sensitive transport by both CFTR and extracellular nucleotides was observed in colon and trachea. However, nucleotides did not inhibit ENaC in Xenopus oocytes, even after coexpression of P2Y 2 receptors. Using different tools such as hexokinase, the P2Y inhibitor suramin or the Cl − channel blocker 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid (DIDS), we did not detect any role of a putative ATP secretion in activation of Cl − transport or inhibition of amiloride sensitive short circuit currents by CFTR. In addition, N 2,2′- O-dibutyrylguanosine 3′,5′-cyclic monophosphate (cGMP) and protein kinase G (PKG)-dependent phosphorylation or the nucleoside diphosphate kinase (NDPK) do not seem to play a role for the inhibition of ENaC by CFTR, which, however, requires the presence of extracellular Cl −.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.