Abstract

Intermittent palm (PC) and sole cooling (SC) are proposed ergogenic methods for enhancing exercise performance during high-intensity and fatiguing conditions. However, findings in the literature regarding its positive effect remain inconclusive. This study aimed at investigating the effects of intermittent PC and SC compared to no cooling (NC) on acute training volume during resistance exercise, particularly focusing on the total number of repetitions (TR) performed. Three separate randomized crossover protocols, incorporating commonly practiced resistance exercises (Protocol 1: pullups; Protocol 2: pushups; Protocol 3: leg extensions), were conducted, enrolling healthy, physically active adults (overall sample: n = 41 (12 female), age: 23.9 ± 4.0 years (mean ± SD), height: 174.4 ± 9.5 cm, body mass: 69.3 ± 12.4 kg). During Protocol 3, tympanic temperature (TT), rate of perceived exertion (RPE), and electromyography (EMG) of quadriceps muscles were additionally assessed for SC. PC resulted in less TR compared to NC in Protocol 1 (p < 0.001). Protocol 2 and 3 did not reveal significant ergogenic benefits of PC or SC compared to NC (p > 0.05). Furthermore, SC had no effect on TT, RPE, or EMG amplitudes (all p > 0.05). The inconsistent findings suggest that intermittent PC and SC might have limited effectiveness in enhancing training volume during resistance exercise in physically active adults. Future research should examine various resistance training protocols under controlled conditions, and incorporate comprehensive physiological measurements to elucidate the potential benefits and mechanisms of intermittent cooling in resistance exercise contexts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.