Abstract

In 21-hydroxylase (CYP21A2) deficiency (21OHD), the level of in vitro enzymatic function allows for classification of mutation groups (null, A, B, C) and prediction of disease severity. However, genital virilization in affected females correlates only weakly with CYP21A2 mutation groups, suggesting the influence of genetic modifiers. The objective of the study was to investigate the influence of the polymorphic CAG and GGn repeats of the androgen receptor (AR) gene on the degree of genital virilization in 21OHD females. Design of the study was the determination of CYP21A2 genotype, degree of genital virilization (Prader stage), and X-weighted biallelic mean of AR CAG and GGn repeat length in 205 females with 21OHD. Correlation of AR CAG and GGn repeat lengths with Prader stages using nested stepwise logistic regression analysis was measured. CYP21A2 mutation groups null and A showed significantly higher levels of genital virilization than groups B and C (P < 0.01). However, Prader stages varied considerably within mutation groups: null, Prader I-V (median IV); A, Prader I-V (median IV); B, Prader I-V (median III); C, 0-III (median I). Mean GGn repeat length of patients was not significantly associated with Prader stages, classified as low (0-I), intermediate (II-III), or severe (IV-V) (odds ratio per repeat: 0.98, 95% confidence interval 0.71-1.35). In contrast, patients with Prader 0-I showed a trend toward longer CAG repeats without reaching statistical significance (P = 0.07, odds ratio per repeat: 0.82, 95% confidence interval 0.65-1.02). Neither CAG nor GGn repeat lengths are statistically significant modifiers of genital virilization in females with 21OHD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call