Abstract

Hemoglobin vesicles (HbVs) are artificial oxygen carriers encapsulating purified and concentrated Hb solution in phospholipid vesicles (liposomes). We examined in-vitro reaction profiles of a formulation of HbV with NO and CO in anaerobic and aerobic conditions using stopped-flow spectrophotometry and a NO electrode. Reaction rate constants of NO to deoxygenated and oxygenated HbV were considerably smaller than those of cell-free Hb because of the intracellular NO-diffusion barrier. The reaction of CO with deoxygenated HbV was slightly slower than that of cell-free Hb solely because of the co-encapsulated allosteric effector, pyridoxal 5'-phosphate. The NO depletion in an aerobic condition in the presence of empty vesicles was monitored using a NO electrode, showing that the hydrophobic bilayer membrane of HbV, which might have higher gas solubility, does not markedly facilitate the O 2 and NO reaction, and that the intracellular Hb is the major component of NO depletion. In conclusion, HbV shows retarded gas reactions, providing some useful information to explain the absence of vasoconstriction and hypertension when they are intravenously injected.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.