Abstract

Canavan disease is caused by mutations in the ASPA gene, leading to diminished catalytic activity of aspartoacylase in the brain. Clinical missense mutations are found throughout the enzyme structure, with many of these mutated enzymes having not only decreased activity but also compromised stability. High-throughput screening of a small molecule library has identified several compounds that significantly increase the thermal stability of the E285A mutant enzyme, the most predominant clinical mutation in Canavan disease, while having a negligible effect on the native enzyme. Based on the initial successes, some structural analogs of these initial hits were selected for further examination. Glutathione, NAAG and patulin were each confirmed to be competitive inhibitors, indicating the binding of these compounds at the dimer interface or near the active site of the E285A enzyme. The experimental results were theoretically examined with the help of the docking analysis method. The structure activity-guided optimization of these compounds can potentially lead to potential pharmacological chaperones that could alleviate the detrimental effect of ASPA mutations in Canavan patients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.