Abstract
We study the next-to-next-to-leading order (NNLO) evolution of flavour singlet parton densities and structure functions in massless perturbative QCD. Present information on the corresponding three-loop splitting functions is used to derive parametrizations of these quantities, including Bjorken-x dependent estimates of their residual uncertainties. Compact expressions are also provided for the exactly known, but in part rather lengthy two-loop singlet coefficient functions. The size of the NNLO corrections and their effect on the stability under variations of the renormalization and mass-factorizations scales are investigated. Except for rather low values of the scales, the residual uncertainty of the three-loop splitting functions does not lead to relevant effects for x > 10^-3. Inclusion of the NNLO contributions considerably reduces the theoretical uncertainty of determinations of the quark and gluon densities from deep-inelastic structure functions.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have