Abstract
In the present study we discuss the interaction of two fluorescent 3-hydroxy-4-pyridinone chelators (MRB7 and MRB8) of different lipophilicities with DMPC liposomes based on the analysis of the shifts of the resonance NMR signals and changes in the translational diffusion of both species. The analysis of the variation of the resonance signals of the chelators indicates that both MRB7 and MRB8 strongly interact with the liposomes and that such interaction occurs through both the fluorophore and the chelating moieties of the chelator's framework. Analysis of the variations in the characteristic resonance signals of the lipid provides evidence that MRB7 is able to reach the hydrophobic zone of the bilayer independent of the chelator concentration. The present results corroborate the fact that ethyl substituents in the amino groups of the xanthene ring and the thiourea link are important for the chelator's ability to diffuse across the lipid bilayer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.