Abstract

The application of high resolution NMR techniques to the investigation of DNA double helices in solution is currently in a rapid state of change as a result of advances in three different fields. First, new methods (cloning, enzymatic degradation, sonication, and chemical synthesis) have been developed for producing large quantities of short DNA suitable for NMR studies. Second, there have been major advances in the field of NMR in terms of the introduction of new pulse techniques and improvements in instrumentation. Finally, as a result of recent X-ray diffraction studies on short DNA helices and the discovery of left-handed Z-DNA there is heightened interest in the study of DNA structures in solution and the effect of sequence on structure. In the present review, we discuss the way in which NMR techniques have been used to probe various aspects of the DNA properties, including base pairing structure, dynamics of breathing, effect of sequence on DNA structure, internal molecular motions, the effect of environment on the DNA, and the interaction of DNA with small ligands.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call