Abstract

In higher eukaryotes, the dsRNA binding proteins (dsRBPs) assist the corresponding Dicer in the cleavage of dsRNA precursors to effect post-transcriptional gene regulation through RNA interference. In contrast, the DRB7.2:DRB4 complex in Arabidopsis thaliana acts as a potent inhibitor of Dicer-like 3 (DCL3) processing by sequestering endogenous inverted-repeat dsRNA precursors. DRB7.2 possesses a single dsRNA Binding Domain (dsRBD) flanked by unstructured N- and C-terminal regions. Whereas, DRB4 has two concatenated N-terminal dsRBDs and a long unstructured C-terminus harboring a small domain of unidentified function, D3. Here, we present near-complete backbone and partial side chain assignments of the interaction domains, DRB7.2M (i.e., DRB7.2 (71-162)) and DRB4D3 (i.e., DRB4 (294-355)) as a complex. Our findings establish the groundwork for future structural, dynamic, and functional research on DRB7.2 and DRB4, and provide clues for the endo-IR pathway in plants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call