Abstract

Longitudinal and transverse relaxivities of solid lipid nanoparticles loaded with superparamagnetic iron oxide nanoparticles (SPION-SLNs) were thoroughly investigated with the aim of understanding the main parameters regulating the potential negative contrast properties of these systems. In particular, the longitudinal relaxivity (r1) of water protons in the 10 kHz to 35 MHz frequency range was determined by 1H fast field-cycling NMR, while transverse relaxivity (r2) was measured at 21 MHz. The reproducibility and stability of SPION-SLNs was also tested on samples arising from independent preparations and at different times after preparation. Water diffusion in proximity of superparamagnetic nanoparticles was found to be the mechanism of proton nuclear relaxation enhancement and characteristic parameters were quantitatively determined by fitting the experimental data acquired on different samples as a function of concentration and temperature. Although a variation ascribable to the formation of clusters w...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.