Abstract
Core–shell nanoparticles (NPs) formed by superparamagnetic iron oxide NPs (SPIONs) coated with inorganic or organically modified (ORMOSIL) sol gel silica exhibited promising properties as negative contrast agents (CA) for MRI applications.The potentiality of these new core–shell NPs as negative CA for MRI is demonstrated and quantified.The longitudinal and transverse relaxivities of NPs with three different coating compositions were studied at a 7 T magnetic field: silica (TEOS), (3-aminopropyl) triethoxysilane (APTES) and (3-glycidoxypropyl) methyldiethoxysilane (GPTMS).Clearly, it was found that the core–shell NPs efficiency as CA was strongly depend on the SPIONs coating.All the three core–shell NPs studied presented a very small effect on the longitudinal relaxation time but a pronounced one on the transverse relaxation time, leading to a very high transverse longitudinal relaxivities ratio, decisive for their efficiency as negative CA for MRI.The effect of the core–shell NPs on the MRI contrast enhancement is obtained and quantified in a set of MRI of agar phantoms obtained at 7 T magnetic field and with a imaging gradient field of 1.6 T/m. The core–shell NPs were tested in Zebra-fish (Danio rerio) animal model. Zebra-fish MRI were obtained with animals injected with the three core–shell NPs and the contrast enhancement validated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.