Abstract
Using the design of bivalent and bridge-binding inhibitors of thrombin as an example, we review an NMR-based experimental approach for the design of functional mimetics of protein-protein interactions. The strategy includes: (i) identification of binding residues in peptide ligands by differential resonance perturbation, (ii) determination of protein-bound structures of peptide ligands by use of transferred NOEs, (iii) minimization of larger protein and peptide ligands on the basis of NMR structural information, and (iv) linkage of two weakly binding mimetics to produce an inhibitor with enhanced affinity and specificity. This approach can be especially effective for the design of potent and selective functional mimetics of protein-protein interactions because it is less likely that the surfaces of two related proteins or enzymes share two identical binding sites or regions.Key words: NMR, protein-protein interactions, functional mimetics, bridge-binding inhibitors, thrombin.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have