Abstract

Intrinsically disordered proteins (IDPs) carry out many biological functions. They lack a stable 3D structure and are able to adopt many different conformations in dynamic equilibrium. The interplay between local dynamics and global rearrangements is key for their function. A widely used experimental NMR spectroscopy approach to study long-range contacts in IDPs exploits paramagnetic effects, and 1 H detection experiments are generally used to determine paramagnetic relaxation enhancement (PRE) for amide protons. However, under physiological conditions, exchange broadening hampers the detection of solvent-exposed amide protons, which reduces the content of information available. Herein, we present an experimental approach based on direct carbon detection of PRE that provides improved resolution, reduced sensitivity to exchange broadening, and complementary information derived from the use of different starting polarization sources.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call