Abstract

Williams-Beuren syndrome is a genetic disorder characterized by physiological and mental abnormalities, and is caused by hemizygous deletion of several genes in chromosome 7. One of the removed genes encodes the WBSCR27 protein. Bioinformatic analysis of the sequence of WBSCR27 indicates that it belongs to the family of SAM-dependent methyltransferases. However, exact cellular functions of this protein or phenotypic consequences of its deficiency are still unknown. Here we report nearly complete 1H, 15N, and 13C chemical shifts assignments of the 26kDa WBSCR27 protein from Mus musculus in complex with the cofactor S-adenosyl-L-methionine (SAM). Analysis of the assigned chemical shifts allowed us to characterize the protein's secondary structure and backbone dynamics. The topology of the protein's fold confirms the assumption that the WBSCR27 protein belongs to the family of class I methyltransferases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.