Abstract

The 26S proteasome is responsible for the selective, ATP-dependent degradation of polyubiquitinated proteins in eukaryotic cells. It consists of a 20S barrel-shaped core particle capped by two 19S regulatory particle at both ends. The Rpn5 subunit is a non-ATPase subunit located in the lid subcomplex of the 19S regulatory particle and is identified to inhibit the Rpn11 deubiquitinase activity in the isolated lid. The protein contains a C-terminal proteasome-CSN-eIF3 (PCI) domain and an N-terminal α-solenoid domain, the latter has been shown to be highly flexible in the isolated lid and may participate in interactions with different subunits of the proteasome. We herein report the 1H, 13C and 15N atoms chemical shift assignments of the N-terminal domain (residues 1-136) of Saccharomyces cerevisiae Rpn5, which provide the basis for further studies of the structure, dynamics and interactions of the Rpn5 subunit by NMR technique.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call