Abstract

This paper illustrates the benefits of a nonlinear model-based predictive control (NMPC) approach applied to an industrial crystallization process. This relevant approach proposes a setpoint tracking of the crystal mass. The controlled variable, unavailable, is obtained using an extended Luenberger observer. A neural network model is used as internal model to predict process outputs. An optimization problem is solved to compute future control actions taking into account real-time control objectives. The performances of this strategy are demonstrated via simulation in cases of setpoint tracking and disturbance rejection. The results reveal a significant improvement in terms of robustness and energy efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.