Abstract
The amygdala contributes to generation of affective behaviors to threats. The prototypical threat to an individual is exposure to a noxious stimulus and the amygdaloid central nucleus (CeA) receives nociceptive input that is mediated by glutamatergic neurotransmission. The present study evaluated the contribution of glutamate receptors in CeA to generation of the affective response to acute pain in rats. Vocalizations that occur following a brief noxious tail shock (vocalization afterdischarges) are a validated rodent model of pain affect, and were preferentially suppressed by bilateral injection into CeA of the NMDA receptor antagonist D-2-amino-5-phosphonovalerate (AP5, 1 μg, 2 μg, or 4 μg) or the non-NMDA receptor antagonist 6-Cyano-7-nitroquinoxaline-2,3-dione disodium (CNQX, .25 μg, .5 μg, 1 μg, or 2 μg). Vocalizations that occur during tail shock were suppressed to a lesser degree, whereas spinal motor reflexes (tail flick and hind limb movements) were unaffected by injection of AP5 or CNQX into CeA. Unilateral administration of AP5 or CNQX into CeA of either hemisphere also selectively elevated vocalization thresholds. Bilateral administration of AP5 or CNQX produced greater increases in vocalization thresholds than the same doses of antagonists administered unilaterality into either hemisphere indicating synergistic hemispheric interactions. PerspectiveThe amygdala contributes to production of emotional responses to environmental threats. Blocking glutamate neurotransmission within the central nucleus of the amygdala suppressed rats’ emotional response to acute painful stimulation. Understanding the neurobiology underlying emotional responses to pain will provide insights into new treatments for pain and its associated affective disorders.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have