Abstract

NMDA-gated ion channel research and its therapeutic potentials in neurodegenerative diseases: a review Maryam Majdi1, Huei-Sheng Vincent Chen1,21Center for Neuroscience, Aging and Stem Cell Research, Burnham Institute for Medical Research, La Jolla, California, USA; 2Division of Cardiology, University of California, San Diego, San Diego, California, USAAbstract: The N-methyl-D-aspartate (NMDA) subtype of glutamate receptor (NMDAR) is essential for normal function of the central nervous system (CNS). Classical NMDARs, activated by glycine and glutamate, are heteromultimers comprising NR1 and NR2 subunits. Nonetheless, excessive activation of NMDARs by excitatory amino acids such as glutamate is thought to mediate neuronal damage in many neurological disorders. The dual role of NMDARs in normal and abnormal functioning of the CNS imposes significant constraints on possible therapeutic strategies aimed at ameliorating neurodegenerative diseases. To create safe NMDAR-based therapies, blockade of excessive NMDAR activity must therefore be achieved with minimal interference on its normal neuronal function. In general, NMDAR antagonists can be classified pharmacologically according to the site of action on the receptor-channel complex. These include drugs acting at the agonist sites (NMDA and glycine), channel pore, and modulatory sites. Both competitive NMDA and glycine antagonists result in generalized inhibition of NMDAR activities and have, thus, failed in clinical trials. Open-channel blockers with uncompetitive antagonism and drugs modulating NMDAR activities are appealing therapeutic strategies because, in theory, these properties could decrease neurotoxicity due to excessive levels of glutamate while sparing physiological neurotransmission. We review here NMDAR-related research that may lead to future therapeutic intervention against neurotoxicity.Keywords: excitotoxicity, open-channel block, uncompetitive antagonism, Alzheimer disease, memantine

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.