Abstract

In this article, we study the triple-collinear limit of scattering amplitudes, focusing the discussion in processes which include at least one photon. To deal with infrared divergences we applied dimensional regularization (DREG) and we worked in the time-like (TL) kinematical region in order to ensure the validity of strict-collinear factorization. Both polarized and unpolarized splitting functions were obtained using independent codes, which allowed to implement a first cross-check among them. The divergent structure of all the triple-collinear splittings was compared with the Catani's formula, and we found a complete agreement. Moreover, in the polarized case, this comparison imposed additional constraints in the finite part of some master integrals (MI). The analysis of photon-started splittings led to very compact expressions, because of gauge invariance. These contributions were identified with the Abelian terms of the remaining splitting functions, which constitutes another cross-check of the results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.