Abstract

Natural killer group 2 member D (NKG2D) is an activating receptor that is expressed on most cytotoxic cells of the immune system, including NK cells, γδ, and CD8+ T cells. It is still a matter of debate whether and how NKG2D mediates priming of CD8+ T cells in vivo, due to a lack of studies where NKG2D is eliminated exclusively in these cells. Here, we studied the impact of NKG2D on effector CD8+ T-cell formation. NKG2D deficiency that is restricted to murine CD8+ T cells did not impair antigen-specific T-cell expansion following mouse CMV and lymphocytic choriomeningitis virus infection, but reduced their capacity to produce cytokines. Upon infection, conventional dendritic cells induce NKG2D ligands, which drive cytokine production on CD8+ T cells via the Dap10 signaling pathway. T-cell development, homing, and proliferation were not affected by NKG2D deficiency and cytotoxicity was only impaired when strong T-cell receptor (TCR) stimuli were used. Transfer of antigen-specific CD8+ T cells demonstrated that NKG2D deficiency attenuated their capacity to reduce viral loads. The inability of NKG2D-deficient cells to produce cytokines could be overcome with injection of IL-15 superagonist during priming. In summary, our data show that NKG2D has a nonredundant role in priming of CD8+ T cells to produce antiviral cytokines.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.