Abstract

The natural killer group 2 member D (NKG2D) is a stimulatory receptor expressed on a subset of mucosal and peripheral CD4+ T cells in patients with Crohn's disease (CD) and other inflammatory diseases. Ligand activation of NKG2D in patients induces CD4+ T cells to release T-helper (Th) 1 cytokines and become cytotoxic. We investigated the Th17 cytokines produced by T cells that express NKG2D in blood and intestinal mucosa samples from patients with CD. We isolated CD4+ T cells from peripheral blood and lamina propria samples of patients with CD or ulcerative colitis (UC) and healthy individuals (controls). We analyzed the phenotype and functions of the CD4+NKG2D+ T cells and the cytokines they produce in response to NKG2D stimulation. In patients with CD, CD4+ T cells that express NKG2D produced high levels of interleukin (IL)-17 and IL-22 and expressed high levels of CCR6, the IL-23 receptor, CD161, and RORC (a transcription factor that regulates expression of Th17 cytokines). CD4+ T cells that produced IL-17 expressed high levels of NKG2D and CD161. Costimulation of NKG2D and the T-cell receptor (TCR) significantly increased production of IL-17 and tumor necrosis factor α by CD4+ T cells, compared with activation of only the TCR. CD4+NKG2D+ T cells also responded to Th17 polarization. NKG2D is a functional marker of CD4+ T cells that produce IL-17 in patients with CD, via costimulation of the TCR and NKG2D. Reagents developed to block NKG2D might reduce gastrointestinal inflammation in patients with CD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.