Abstract

Nitrous oxide (N2O) emissions result from the nitrification and denitrification processes, the latter strongly affected by soil organic carbon (C) derived from plant residues. This study addressed two questions: (1) does plant residue C become less available to denitrifiers after a period of aerobic incubation, and (2) do plant residues with smaller particle sizes provide C for higher rates of N2O production due to a faster decomposition rate? Nitrous oxide fluxes from soil amended with alfalfa or corn residues, or glucose were measured in the laboratory using a gas flow‐through chamber system. Soil amended with these C substrates was also subjected to a 5‐d aerobic preincubation treatment. The significance of particle size on C availability was studied by comparing N2O released from soil amended with ground (particle size <1 mm) and large pieces (5‐cm lengths) of alfalfa residues. A 5‐d aerobic preincubation of soil amended with plant residues resulted in reduced N2O production during a subsequent anaerobic period. Results suggested that, due to consumption of the most available substrate, remaining C in plant residues is less available to denitrifiers after a period of aerobic incubation. Higher N2O losses were found with large alfalfa particles than with ground alfalfa.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.