Abstract

This study focuses on nitrous oxide (N2O) emissions during hypersaline (4 % salinity) nitritation in continuously fed and mixed fixed bed reactors. In the presence of high concentrations of nitrite and ammonium, the percent yield of N2O emissions from ammonium removed decreased with increasing dissolved oxygen (DO). However, N2O production continued even at a high DO of 15 mg/L. Bulk ammonium concentration (not ammonia) was found to be the main controlling factor for N2O emissions under high and low DO during both nitritation and nitrification. Reducing bulk ammonium concentrations below 1 mg N/L in the nitritation reactor under both high and low DO conditions resulted in a reduction of N2O emissions of approximately 90 %. Under full nitrification and low DO, reducing nitrite concentrations below 0.3 mg N/L resulted in a 60 % reduction in N2O emissions. Similar results were observed in a low salinity reactor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.