Abstract

We report on an ion implantation technique utilizing a screening mask made of SiO2 to control both the depth profile and the dose. By appropriately selecting the thickness of the screening layer, this method fully suppresses the ion channeling, brings the location of the highest nitrogen-vacancy (NV) density to the surface, and effectively reduces the dose by more than three orders of magnitude. With a standard ion implantation system operating at the energy of 10 keV and the dose of 1011 cm2 and without an additional etching process, we create single NV centers close to the surface with coherence times of a few tens of μs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.