Abstract

In this study, a facile one-step method via pyrolysis was used to prepare nitrogen self-doped metal free catalysts derived from inexpensive biomass-chitin for an electrochemical CO2 reduction reaction (CO2RR). The microstructure, surface area, defect and N type in the catalysts were analyzed by BET, Raman, XPS, SEM and TEM. The sustainable chitin-based electrocatalyst prepared under optimized conditions has a surface area of 1972 m2/g and can convert CO2 into CO with FECO of ~90% at a potential of −0.59 V (vs. RHE). This good CO2RR performance results from plentiful active sites due to a high surface area, rich ultra-micropores that are beneficial to CO2 adsorption, abundant mesopores for CO2 transport improvement, a high content of pyridinic and graphitic nitrogen that is favorable for a CO2 reduction reaction and a low interfacial charge transfer resistance leading to a rapid electron transfer rate from the catalyst to CO2. This study shows the feasibility of N self-doped biomass-derived catalysts for CO2RR with the potential for large-scale industrial applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.