Abstract

Extensive investigations have been devoted to nitrogen-doped carbon materials as catalysts for the oxygen reduction reaction (ORR) in various conversion technologies. In this study, we introduce nitrogen-doped carbon materials with hollow spherical structures. These materials demonstrate significant potential in ORR activity within alkaline media, showing a half-wave potential of 0.87 V versus the reversible hydrogen electrode (RHE). Nitrogen-doped hollow carbon spheres (N-CHS) exhibit unique characteristics such as a thin carbon shell layer, hollow structure, large surface area, and distinct pore features. These features collectively create an optimal environment for facilitating the diffusion of reactants, thereby enhancing the exposure of active sites and improving catalytic performance. Building upon the promising qualities of N-CHS as a catalyst support, we employ heme chloride (1 wt%) as the source of iron for Fe doping. Through the carbonization process, Fe-N active sites are effectively formed, displaying a half-wave potential of 0.9 V versus RHE. Notably, when implemented as a cathode catalyst in zinc-air batteries, this catalyst exhibits an impressive power density of 162.6 mW cm−2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.