Abstract

With the associated advantages of low costs and abundant resources, sodium-ion capacitors (SICs) present a suitable means for large-scale energy storage. However, their practical application is still significantly limited by the sluggish electrochemical reaction kinetics of battery-type anodes. Herein, the nitrogen-doped carbon-encapsulated Fe7Se8 nanorods (Fe7Se8@NC) with a core–shell structure were prepared via an in-situ self-polymerization and carbonization–selenization approach, which improves ion transport and maintains the structural stability of the nanorods. The designed Fe7Se8@NC nanorods exhibit desirable rate capability with a capacity of 290.7 mAh/g at 10 A/g and long-term cyclability with 84.6 % retention over 6000 cycles at 5 A/g. Moreover, research has shown that the diffusion dynamics of Na+ is improved in ether-based electrolytes and that the irreversible reactions at low voltages can be inhibited by a high discharge cut-off voltage. Furthermore, we demonstrated the specific sodium storage mechanism and excellent electrochemical reversibility of the Fe7Se8@NC electrode through in-situ and ex-situ characterization techniques. As expected, the assembled SICs with the Fe7Se8@NC anode and active carbon cathode deliver prominent energy/power densities and an ultra-long cycle life over 5000 cycles, shedding new light on the design of transition metal dichalcogenides as anode materials for advanced energy storage systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.