Abstract

Straw amendment can increase nitrogen fixation in paddy field, however, the efficiency of carbon sources with different biochemical properties to enhance N2 fixation and nitrogen fixation activity is still unclear. A 15N2-labelling system was used in the field environment to determine biological nitrogen fixation (BNF) under the addition of three kinds of straw. The nifH gene (DNA) and nifH RNA gene (cDNA) of soil were amplified by real-time fluorescent quantitative PCR. The diversity and community composition of nitrogen fixing microorganisms were studied by high-throughput sequencing. The study is expected to reveal how different carbon sources impact biological nitrogen fixation and its mechanism in the paddy field system. Results showed that the absolute abundance diazotrophs in the treatment of mature stage wheat straw (MWS) was 4.88 times as high as that in the CK treatment, but jointing stage wheat straw (JWS) and poplar branch (PB) did not induce any significant changes. Straw amendment had no impact on cyanobacteria abundance. The proportion of N2 fixation increased by MWS was 2.07 times, but which was much lower than the increase proportion of the heterotrophic diazotrophs, leading to a decrease of diazotrophic nitrogen fixation activity. Mature wheat straw addition increased biologically fixed nitrogen in paddy field by increasing the number of heterotrophic nitrogen fixing bacteria. The results indicated that to increase biological N2 fixation in paddy system, straws with low nitrogen content and high C/N ratio were recommended.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call