Abstract

In this study, resistive switching behaviors of Ag/SiN/p+-Si device were investigated by adjusting nitrogen concentration and layer thickness. The device with a nitrogen concentration of 50% and a thickness of 10 nm has a typical bipolar resistive switching behavior with a low forming voltage (~4 V), a high on/off ratio (~102), an excellent endurance (>102) and a long retention time (>105 s). According to I–V characteristics analyses, electric transports in both a high resistance state and a low resistance state are dominated by hot electron emission which is caused by the electron trapping and detrapping through immovable nitrogenrelated traps. The temperature dependence of a resistive switching behavior not only illustrates the existence and importance of the traps, but also discovers a new phenomenon of the transition about the polar of a resistive switching method. Surely, more efforts need to be made for deeper understanding of the carrier transport in SiN thin films.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call