Abstract
Nitrogen (N) uptake by plant roots from soil is the largest flux within the terrestrial N cycle. Despite its significance, a comprehensive analysis of plant uptake for inorganic and organic N forms across grasslands is lacking. Here we measured in situ plant uptake of 13 inorganic and organic N forms by dominant species along a 3000 km transect spanning temperate and alpine grasslands. To generalize our experimental findings, we synthesized data on N uptake from 60 studies encompassing 148 plant species world-wide. Our analysis revealed that alpine grasslands had faster NH4 + uptake than temperate grasslands. Most plants preferred NO3 - (65%) over NH4 + (24%), followed by amino acids (11%). The uptake preferences and uptake rates were modulated by soil N availability that was defined by climate, soil properties, and intrinsic characteristics of the N form. These findings pave the way toward more fully understanding of N cycling in terrestrial ecosystems, provide novel insights into the N form-specific mechanisms of plant N uptake, and highlight ecological consequences of chemical niche differentiation to reduce competition between coexisting plant species.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.