Abstract

Effects of N and K nutrition on drought and cavitation resistance were examined in six greenhouse-grown poplar clones: Populus trichocarpa (Torr. & Gray) and its hybrids with P. deltoides Bartr. and P. euramericana (Dole) Guinier, before and after preconditioning to water stress. Both tendency to cavitate and water-use efficiency (WUE) increased when N supply was increased, whereas K supply had little impact on cavitation. Mean xylem vessel diameters increased from 36.6 &mgr;m at low-N supply to 45.2 &mgr;m at high-N supply. Drought-hardy clones, which were relatively resistant to cavitation, had the smallest mean vessel diameters. Vulnerability to cavitation had a weakly positive relationship with vessel diameter, and a negative correlation with transpiration. Drought hardening offered no protection against cavitation in a subsequent drought. Under drought conditions, increasing N supply increased leaf loss and decreased water potentials, whereas increasing K supply decreased leaf loss. Drought-resistant clones exhibited similar WUE to drought-susceptible clones, but had smaller, more numerous stomata and greater leaf retention under drought conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.