Abstract
Constructed wetlands (CWs) are generally used for wastewater treatment and removing nitrogen and phosphorus. However, the treatment efficiency of CWs is limited due to the poor performance of various substrates. To find appropriate substrates of CWs for micro-polluted water treatment, zeolite, quartz sand, bio-ceramsite, porous filter, and palygorskite self-assembled composite material (PSM) were used as filtering media to treat slightly polluted water with the aid of autotrophic denitrifying bacteria. PSM exhibited the most remarkable nitrogen and phosphorus removal performance among these substrates. The average removal efficiencies of ammonia nitrogen, total nitrogen, and total phosphorus of PSM were 66.4%, 58.1%, and 85%, respectively. First-order continuous stirred-tank reactor (first-order-CSTR) and Monod continuous stirred-tank reactor (Monod-CSTR) models were established to investigate the kinetic behavior of denitrification nitrogen removal processes using different substrates. Monod-CSTR model was proven to be an accurate model that could simulate nitrate nitrogen removal performance in vertical flow constructed wetland (VFCWs). Moreover, PSM demonstrated significant pollutant removal capacity with the kinetics coefficient of 2.0021 g/m2 d. Hence, PSM can be considered as a promising new type of substrate for micro-polluted wastewater treatment, and Monod-CSTR model can be employed to simulate denitrification processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.