Abstract

AbstractPerennial tall grasses show promise as bioenergy crops due to high productivity and efficient nutrient use. Ongoing research on bioenergy grasses seeks to reduce their reliance on synthetic nitrogen (N) fertilizer, the manufacture of which relies on fossil fuel combustion. Excessive use of fertilizers also causes adverse environmental consequences and leads to the evolutionary loss of plant traits beneficial to sustainable N cycle. Notably, perennial tall grasses have exhibited the potential to maintain high biomass yield without the need for N fertilizer or causing soil N depletion. Perennial grasses can be adept at interacting with their microbial partners to facilitate N acquisition and retention via mechanisms such as biological N fixation and nitrification inhibition. These inherent N management traits should be preserved and optimized at the this early stage of bioenergy grass breeding programs. This review examines the impact of external N on bioenergy grass production and explores the potential of leveraging advantageous N‐cycling attributes of perennial tall grasses, laying groundwork for future management and research efforts. With minimized dependency on external N input, the cultivation of perennial energy grasses will pave the way toward more resilient agricultural systems and play a significant role in addressing key global energy and environmental challenges.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.