Abstract

Spectroscopy under isolated conditions at low temperatures is an excellent tool to characterize the aggregates stabilized through weak interactions. Within the framework of weak interactions, the π-stacking interactions are considered unconventional with the limited experimental proofs, wherein the bonding associates are either aromatic and heterocyclic compounds or their combinations. Besides aromatic compounds, π-stacking networks can even be realized with molecules possessing electron rich π-clouds. In this work, the N2 molecule as a possible π-bonding partner is explored for the first time in which hetero π-stacking was achieved between pyrrole and N2 precursors. The matrix isolation experiments performed by seeding pyrrole and N2 mixtures in an Ar matrix at low temperatures with subsequent infrared spectral characterization revealed the generation of adducts stabilized through a π(pyrrole)···π(N2) interaction. Under identical conditions with the likelihood of two competing π-stacking and hydrogen-bonding interactions in pyrrole-N2 associates, π-stacking dominates energetically over hydrogen-bonding interaction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.