Abstract

We present herein our computational exploration of the conformational landscape and photophysical properties of protonated adenosine (AdoH+). Several different protonated isomers and conformers have been considered and their relevant photophysical properties have been addressed. From our ab initio quantum computational results, an S1/S0 conical intersection (CI) has been located for all considered conformers, providing a significant route for the ultrafast deactivation mechanism of the S1 excited state of AdoH+. Our results are also supported by nonadiabatic dynamics (NAD) simulation results indicating the S1 excited state lifetime of 240-300 fs for the two most stable conformers of AdoH+ (i.e., the most stable syn- and anti-N3 protonated tautomers), which is comparable with protonated adenine, reported in the literature. The results confirm the ultrafast deactivation mechanism as well as photostability in nucleosides in protonated form.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.