Abstract
Carbon nitride (g-C3N4) is aussichtsreich for photocatalytic hydrogen evolution, but its photocatalytic activity is not ideal due to the existence of photogenerated electrons and holes in the form of excitons. Herein, a novel nitrobenzene inarched g-C3N4 nanotube photocatalyst (CN-DNP) was firstly fabricated via a facial copolymerization method. The aromatic ring in nitrobenzene could enhance the conjugation of carbon nitride to promote electron delocalization. The nitro group enabled electrons to transfer from center to the both ends of g-C3N4 nanotube, which drove the separation of photogenerated electrons and holes more effectively. Compared with bulk g-C3N4 (CN), CN-DNP had narrower bandgap that can acquire adequate visible light harvesting and improve its photocatalytic performance. Consequently, CN-DNP0.1 displayed an excellent photocatalytic H2 evolution of 2262.4 μmol g−1h−1, which was 11.2 folds higher than that of CN. This strategy provides a new guidance for constructing carbon nitride nanotube materials with carrier directional transfer to enhance the photocatalytic performance.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have