Abstract

The present study determined the effects of acetylcholine (ACh) on the L-type Ca(2+) current (I(Ca,L)) stimulated by beta(1)- or beta(2)-adrenergic receptor (AR) agonists in cat atrial myocytes. When isoproterenol (ISO; 0.1 microM) plus the beta(2)-AR antagonist ICI 118,551 (ISO-beta(1)-AR stimulation) or 0.1 microM fenoterol, a beta(2)-AR agonist (FEN-beta(2)-AR stimulation) increased I(Ca,L), ACh (1 microM) inhibited I(Ca,L) by -60 +/- 4 and -63 +/- 6 %, respectively. When ISO plus the beta(1)-AR antagonist atenolol (ISO-beta(2)-AR stimulation) or 1 microM zinterol (ZIN-beta(2)-AR stimulation) increased I(Ca,L), ACh-induced inhibition of I(Ca,L) was significantly smaller, at -21 +/- 3 and -24 +/- 3 %, respectively. L-N(5)-(1-iminoethyl)ornithine (L-NIO, 10 microM), an inhibitor of nitric oxide (NO) synthase, enhanced ACh-induced inhibition of I(Ca,L) when stimulated by ZIN-beta(2)-ARs, but not when stimulated by ISO-beta(1)-ARs or FEN-beta(2)-ARs. Haemoglobin (50 microM), a NO scavenger, also enhanced ACh-induced inhibition when I(Ca,L) was stimulated by ZIN-beta(2)-ARs, but not when stimulated by FEN-beta(2)-ARs. ACh-induced inhibition of I(Ca,L) stimulated by ZIN-beta(2)-ARs was not affected by 10 microM 1H-[1,2,4] oxadiazolo[4,3-a] quinoxaline-1-one (ODQ) a guanylate cyclase inhibitor, but was significantly enhanced by 500 microM reduced glutathione or 100 microM dithiothreitol, agents that act as sinks for S-nitrosylation. ACh-induced inhibition was smaller when I(Ca,L) was stimulated by spermine/NO, a NO donor, than by milrinone, a phosphodiesterase type III inhibitor. ISO (ISO-beta(1)/beta(2)-AR stimulation) increased I(Ca,L) and even though ISO releases NO, ACh prominently inhibited I(Ca,L). This inhibitory effect of ACh was enhanced by L-NIO. Stimulation of ZIN-beta(2)-ARs increased intracellular NO, whereas ISO-beta(1)-ARs or FEN-beta(2)-ARs failed to increase intracellular NO. These results indicate that in atrial myocytes, NO released by selective beta(2)-AR stimulation prevents ACh-induced inhibition of I(Ca,L) stimulated by beta(2)-ARs. NO acts via a cGMP-independent, S-nitrosylation mechanism. Although FEN acts via beta(2)-ARs, it fails to stimulate G(i)-/NO signalling and preferentially stimulates G(s)-/adenylate cyclase signalling, similar to beta(1)-ARs. These findings indicate that NO signalling modulates muscarinic receptor inhibition of atrial function stimulated by beta(2)-ARs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call